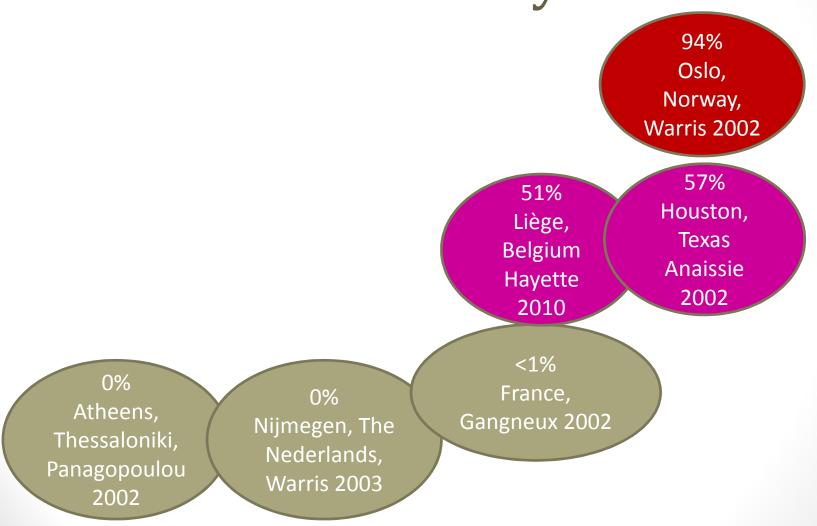


BELGISCHE VERENIGING VOOR MENSELIJKE EN DIERLIJKE MYCOLOGIE

SOCIETE BELGE DE MYCOLOGIE HUMAINE ET ANIMALE

FILAMENTOUS FUNGI IN HOSPITAL WATER DISTRIBUTION SYSTEMS: WHAT IS THE RISK?

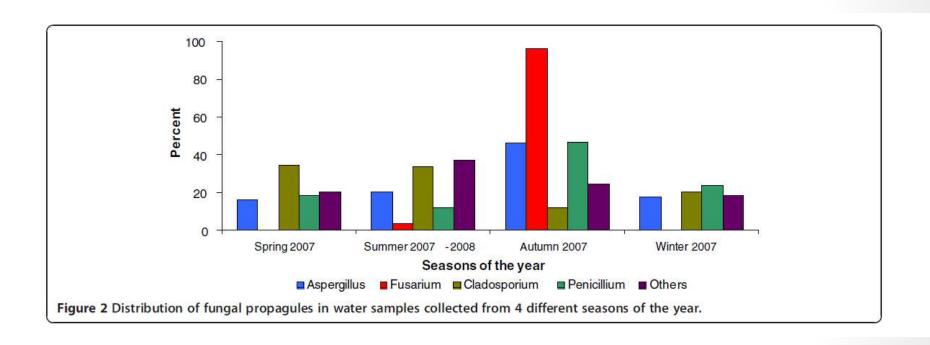
MARIE-PIERRE HAYETTE
University Hospital of Liège



Biofilms

Variable situations in hospital water distribution systems

Origin of the water



Water storage tanks

Warris A CID 2002

Highest concentration in autumn

Surveys: 1996-2003

Country, Place, Year	Period of time	Type of water	Main isolation method	Most frequent fungal isolates
United Kingdom, 1996	Autumn and Spring	Surface water and network	Membrane filtration, Direct plating and Bating	Aspergillus, Cladosporium, Epicoccum, Penicillium and Trichoderma
Greece, Thessaloniki, 1998	One collection (126 samples)	Tap water (hospital and community)	Membrane filtration	Penicillium, <u>Aspervillus</u> and Acremonium
Greece, 85 haemodialysis units, 1998	One collection (255 samples)	Municipal water supplies of haemodialysis centres	Membrane filtration	Penicillium and Aspergillus
Germany, North Rhine-Westphalia, 1998/9	12 months	Drinking water	Pour-plating	Acremonium, Exophiala, Penicillium and Phialophora
Norway, 14 networks, 2002/3	December, June and September	Drinking water (surface and groundwater)	Membrane filtration	Penicillium, Trichoderma and <u>Aspervillus</u>

SURVEYS 2004-2010

Country, Place, Year	Period of time	Type of water	Main isolation method	Most frequent fungal isolates
Portugal, Braga,	12 months	Tap water	Membrane	Penicillium and
2003/4		-83	filtration	Acremonium
Pakistan, Karachi,	One collection	Water	Direct plating	Aspergillus niger and
2007	(30 samples)	(and fruit juice)		A. clavatus
Australia,	18 months	Municipal water	Membrane	Cladosporium, Penicillium,
Queensland, 2007/8			filtration	Aspergillus and Fusarium
Brazil, Recife,	5 months	Water treatment	Membrane	Penicillium, Aspervillus
2009/10		plant; tap water	filtration	and <i>Phoma</i>
Portugal, Lisbon,	4 months	surface water;	Membrane	Aspergillus, Cladosporium,
2010		spring water; groundwater	filtration	Penicillium
Belgium, Liège	4 months	Гар water+MDS	Membrane filtration	Fusarium, <u>Aspergillus,</u> Penicillium, Paecilomyce

Fusariosis Associated with Pathogenic Fusarium Species Colonization of a Hospital Water System: A New Paradigm for the Epidemiology of Opportunistic Mold Infections

Elias J. Anaissie, Robert T. Kuchar, John H. Rex, Andrea Francesconi, Miki Kasai, Frank-Michael C. Müller, Mario Lozano-Chiu, Richard C. Summerbell, M. Cecilia Dignani, Stephen J. Chanock, and Thomas J. Walsh

Houston university Hospital, Texas, 2001 Numerous cases of *Fusariosis* over a 10- year period

- 162/283 (57%) *Fusarium sp. in* water samples
- 18 strains of F. solani from patients/17 F. solani from environment

Table 2. Molecular biotyping profiles of related strains of *Fusarium solani* isolated from patient and environmental samples from a hospital in Houston, Texas.

	Patte					
Type of matched isolate,	Laboratory A			Laboratory B:		
by source; isolate no.a	RAPD	RFLP	IR-PCR	RAPD	Relatedness ^c	
Patient-environment						
1381, 1370	Highly probable	Probable	Probable	Highly probable	Probably related	
1379, 1369	Probable	Highly probable	Probable	Probable	Possibly related	
Patient-patient						
1328, 1379	Probable	Highly probable	Highly probable	Probable	Probably related	
1242, 1319	Highly probable	Probable	Probable	Highly probable	Probably related	
1317, 1377	Highly probable	Probable	Probable	Highly probable	Probably related	
Environment-environment						
1368, 1370	Probable	Highly probable	Probable	Probable	Possibly related	

Fusariosis Associated with Pathogenic Fusarium Species Colonization of a Hospital Water System: A New Paradigm for the Epidemiology of Opportunistic Mold Infections

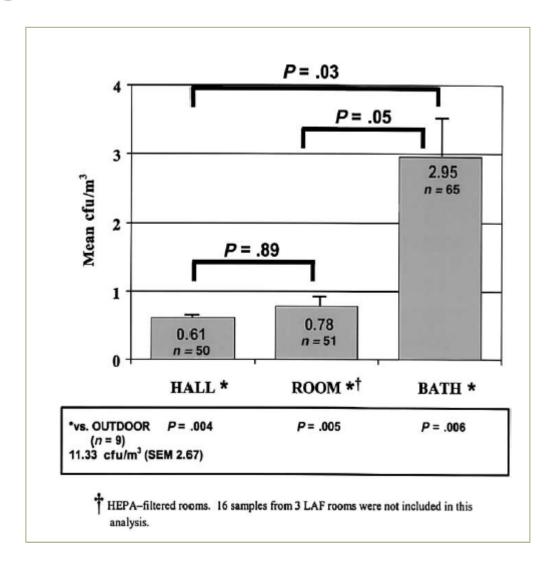
Elias J. Anaissie, Robert T. Kuchar, John H. Rex, Andrea Francesconi, Miki Kasai, Frank-Michael C. Müller, Mario Lozano-Chiu, Richard C. Summerbell, M. Cecilia Dignani, Stephen J. Chanock, and Thomas J. Walsh

Houston university Hospital, Texas, 2001

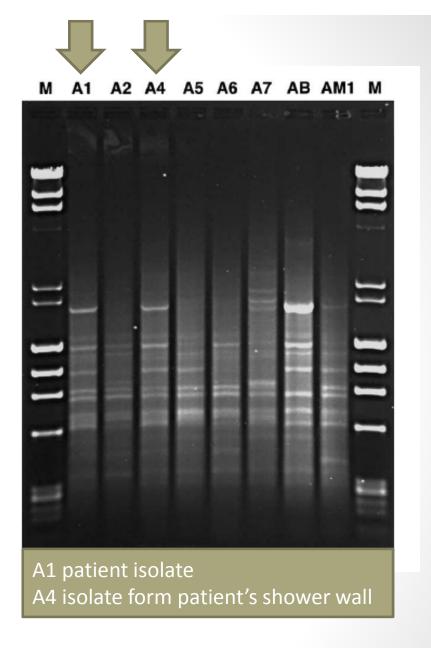
Numerous cases of *Fusariosis*over a 10- year period

- 1. This study demonstrates that hospital water is a **reservoir** for opportunistic fungi (*Fusarium*)
- 2. Genetically diverse strains of *F. solani* can contaminate the water system and persist for years
- 3. WDS can disseminate the fungi by way of aerosols from shower and sink
- 4. Isolates of *Fusarium* can cause nosocomial infections

Pathogenic *Aspergillus* Species Recovered from a Hospital Water System: A 3-Year Prospective Study


Elias J. Anaissie, Shawna L. Stratton, M. Cecilia Dignani, Richard C. Summerbell, John H. Rex, Thomas P. Monson, Trey Spencer, Miki Kasai, Andrea Francesconi, and Thomas J. Walsh

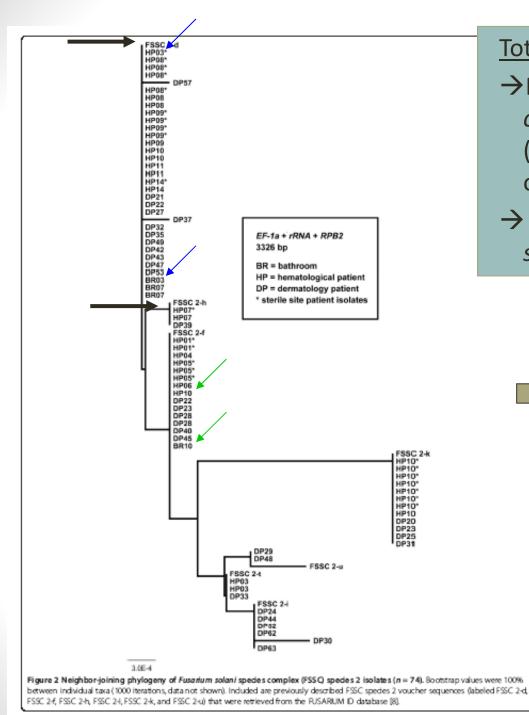
Study conducted in the Hospital of Little Rock, Arkansas


 Comparison of genotypic profile of environmental strains and patients isolates

- 1. 21% *Aspergillus* positive water samples from patients care areas
- 2. Significantly higher concentration of air-borne propagules were found in bathrooms

Higher rates in the shower

3. An isolate of *A. fumigatus* of a patient with IPA was genotypically identical to an isolate recovered from the shower wall of patient's room



Molecular analyses of *Fusarium* isolates recovered from a cluster of invasive mold infections in a Brazilian hospital

Christina M Scheel^{1*†}, Steven F Hurst^{1†}, Gloria Barreiros^{2†}, Tiyomi Akiti^{2†}, Marcio Nucci^{2†} and S Arunmozhi Balajee^{3†}

Scheel et al. BMC Infect Dis 2013

Total: 166 Fusarium isolates

- → PATIENTS: 68% F. solani species complex (FSSC) in clinical samples (BMTU, dermatology clinic outpatients)
- → ENVIRONMENT: 50% F. oxysporum species complex FOSC

Two identical profiles between one strain from a BMTU patient and the bathroom but no temporal association

Scheel et al. BMC Infect Dis 2013

Sampling methodology: « guidelines? »

Kauffmann-Lacroix C, P Med 2008

- French multicentric study from Feb 2004→March 2005
- →no difference in colonisation between cold and hot water
- > no Aspergillus fumigatus but dematiaceous fungi +++

1L cold water
Filtration on 0,45µ membrane
Plating on SDA
Incubation at 27-30°C for 7
days

WHEN?

- Baseline study + regular survey
- Check if working on the WDS
- And if IFI

Sampling methodologies: media

	Glucose (g)	рН	Antibiotiques
CMA/2 Corn meal agar half streng	0	5.8-6.2	No
CZ Czapec agar	30	6.0-6.4	No

DG18

Dichloran 18% glycerol agar

DRBC

Dichloran RoseBengale Chloramphenicol agar

DG18: recommended medium: 2 avantages

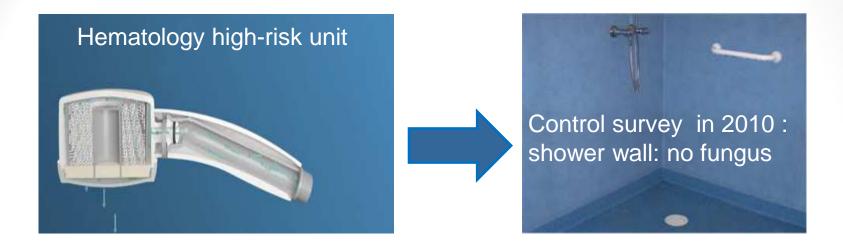
- → characteristic colony appearance
- →inhibits overgrowth of fast growing fungi (*Trichoderma*, mucorales)

NGRBA Neopeptone glucose rose Bengale aureomycine	10	6.3-6.7	Aureomycine
PDA Potato dextrose agar	20	5.4-5.8	No
MEA Malt extract agar	20	5.0-5.5	No
SDA Sabouraud dextrose agar	40	5.4-5.8 Sigueiro	No a V. IJERPH 2011

Study at the University Hospital of Liège

- CHU Liège: 955 Beds, 3 sites, Surface and underground water
- Filtration + chlorination before to enter the hospital <u>and</u> >65°C for hot water.
- Study during 4 months from Feb 2005- March 2006
- Methodology: 197 sampling points
 - 500 ml cold and 500 ml hot water
 - filtration on 0,45μ Millipore membranes
 - Sabouraud agar medium (+ATB)
 - Incubation at 30°C for 1 month

Results


contamination rate: 51%

Site 1 Site 3

Filamentous fungi	Sampling sites					
	Three sites $(N = 197) n (\%)$	ST $(N = 107) n (\%)$	OA $(N = 40) n (\%)$	NDB $(N = 50) \ n \ (\%)$	P (ST, OA, NDB)	
Acremonium spp.	3 (1.5)	1 (0.9)	1 (2.5)	1 (2)	NS	
Alternaria spp.	1 (0.5)	1 (0.9)	=	=	NS	
Aspergillus spp.	12 (6)	8 (7.4)	4 (10)		NS)	
A. flavus	2 (1)	2(1)	=	=	NS	
A. fumigatus	4(2)	2(1)	2 (5)	-	NS	
A. nidulans	2(1)	2(1)	=	-	NS	
A. niger	2(1)	=	2(1)	-	NS	
A. sydowii	2(1)	2(1)	=	-	NS	
Cladosporium spp.	6 (3)	4 (3.7)	1 (2.5)	1 (2)	NS	
Fusarium spp.	23 (11.6)	3 (2.8)	6 (15)	14 (28)	≤0.001	
Monilia spp.	7 (3.5)	2 (1.8)	3 (7.5)	2 (4)	NS	
Paecilomyces spp.	14 (7)	6 (5.6)	4	8 (16)	≤0.05	
Penicillium spp.	22 (11.2)	9 (8.4)	6 (15)	7 (14)	NS	
Sterile mycelia	10 (5)	5 (4.6)	1 (2.5)	4 (8)	NS	
Trichoderma spp.	4 (2)	1 (0.9)	2 (5)	1 (2)	NS	
Contamination rates	102 (51)	40 (37.3)	24 (60)	38 (76)	≤0.01	

ST, Sart Tilman; OA, Ourthe-Amblève; NDB, Notre-Dame des Bruyères; *N*, total number of tested samples; *n*, number of samples; NS, not significant; (–), no observation.

Conclusion of the study and preventive measures

- Implementation: quite easy
- Regular replacement more difficult to implement !!!

Conclusion

- There is a need for guidelines
- Every hospital with severe immunosuppressed patients should be aware of the potential danger
- > sampling tap water and shower walls
- implement point-of-use filtration systems and organize replacement
- > avoid showering during severe immunosuppression
- replace showers by baths

