Challenges in prevention and case management of tinea capitis.

An example from a primary school outbreak in 2013.

Amber Litzroth, Scientific Institute of Public Health, detached to Agency for Care and Health Flanders, Epiet MS track fellow cohort 2012.
Ann Packeu, Section of Mycology & Aerobiology, Scientific Institute of Public Health.
Content

- Background and epidemiology
- The outbreak alert
- Outbreak investigation:
 - Aim
 - Methods
 - Results
 - Conclusions
 - Recommendations
Tinea capitis

• Fungal scalp infection
 • Dandruff in patches
 • Bald patches
 • Swelling or sores (kerion)

• Dermatophytes
 • Human-to-human
 • Animal-to-human
 • Soil-to-human

• Oral antifungal treatment

• Prepubertal children
Epidemiology of tinea capitis in Europe

Incidence decreasing since 1950’s
- Griseofulvin
- Better surveillance

Mainly animal-to-human

Tourism and migration
- Shift towards human-to-human in urban regions
- Increased incidence
Epidemiology of tinea capitis in Belgium

1999 – 2004: *M. audouinii* in 71% of cases*

Since 2000 increase in outbreaks
- schools
- day care centres

Not notifiable in Belgium

* As reported by the Unit for Mycoses of Institute of Public Health (IPH)
Primary school outbreak, Antwerp, Belgium, 2013

- First case in school (1)
- Feb 2013
- School doctor detects first case (2)
- Mar 2013
- Teachers suspect more cases (3)
- Apr 2013
- Official request for support (4)
- May 2013
- Dermatologist diagnosed *Microsporum canis* infection
 - = animal-to-human transmitted
 - → no control measures in school
- Contact school doctor (3)
- School doctor requests support from Agency for Care and Health (4)
The request for support in this outbreak

School doctor contacted Agency for Care and Health, Antwerp:

- Outbreak management
 - Advice
 - Additional epidemiological investigations
 - Additional laboratory investigations

⇒ Start of the outbreak investigation
Aim of the outbreak investigation

- Determine the extent and pathogen
- Evaluate follow up of treatment recommendations
- Describe risk factors

In order to:

- Control the outbreak
- Formulate recommendations for controlling and preventing future outbreaks
Case definition and case finding

Case definition:
Pupil
- Tinea capitis clinically diagnosed by physician after referral by school doctor

Case finding:
24th May 2013
Clinical screening of all pupils during school visit
 ⇒ referral to physician in case of symptoms

Treatment recommendation for physicians:
- Prescribe oral treatment if tinea capitis
Data collection and descriptive epidemiology

Data collection:
- Demographics, symptoms, treatment prescribed
- School records, physicians, school doctor, teachers
- No questionnaire

Description of cases:
- Age
- Gender
- Symptoms
- Treatment prescribed by the physician
Cohort study

Retrospective cohort study:
- Including all pupils
- Identification of risk factors

Analysis:
- Attack rates
- Adjusted risk ratios (log binomial regression)
Specimen collection

- 3 weeks after school screening
- Symptomatic pupils
- "Tooth brush" method
- Section of Mycology & Aerobiology, Scientific Institute of Public Health

+ Local laboratory data available through physicians
Early control measures

24 May 2013

Note for all parents:
• Clean pillows, combs, …
• Take symptomatic animals to vet

27 May 2013

Cleaning of school, including stuffed animals, clothes…
Results: Descriptive

Attack rate
19 tinea capitis cases on 291 pupils → Attack rate = 6.5%

Description of cases
• 5-13 years, median 8
• 13 (68%) boys
• 14 (73%) prescribed oral treatment
• Symptoms: dandruff in patches to bald patches
Risk factors for tinea capitis infection in a primary school outbreak, Antwerp, 2013.

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Adjusted relative risk</th>
<th>P value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminated sibling</td>
<td>11</td>
<td><0,001</td>
<td>5,4-22,5</td>
</tr>
<tr>
<td>Contaminated class mate</td>
<td>4,6</td>
<td>0,004</td>
<td>1,6-12,8</td>
</tr>
</tbody>
</table>

No association with age, gender, class, nationality, language spoken at home.
Microbiology results

<table>
<thead>
<tr>
<th>Specimens collected in study</th>
<th>Physicians</th>
<th>Number of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=15)</td>
<td>(N=3)</td>
<td></td>
</tr>
<tr>
<td>M. audouinii</td>
<td>Negative</td>
<td>1</td>
</tr>
<tr>
<td>M. audouinii</td>
<td>M. canis</td>
<td>2*</td>
</tr>
<tr>
<td>M. audouinii</td>
<td>/</td>
<td>3</td>
</tr>
<tr>
<td>Negative</td>
<td>/</td>
<td>9</td>
</tr>
</tbody>
</table>

* Including index case
Microsporum audouinii

- Human to human transmitted

- Microscopically resembles *Microsporum canis* → laboratory experience needed
Limitations

Specimen collection
 • No asymptomatic carriers
 • 3 weeks after case finding

Case definition based on clinical diagnosis
Conclusions

1. Quarter of cases did not receive the required oral antifungal treatment.

2. Intrafamilial transmission had a bigger impact than transmission between classmates.

3. Misdiagnosis occurred and contributed to the spread of the outbreak.
Recommendations

1. Development of *guidelines* for physicians on case management of tinea capitis.

2. Placement of additional focus on *prevention of intrafamilial transmission*.

3. Involvement of *specialised mycology laboratories*.
Acknowledgements

Infectious Disease Control Antwerp
Koen De Schrijver

Centre for Student Guidance Het Kompas
Goedele Andries

EPIET
Pawel Stefanoff
Mycology & Aerobiology
“Tooth brush” method

max. 21 days (25°C)

Subculture on appropriate media (25°C)

Results after appearances of morphological characteristics (up to 21 days)
“Tooth brush” method

max. 21 days (25°C)

Subculture on appropriate media (25°C)

Results after appearances of morphological characteristics (up to 21 days)
Classical identification (ID)

- Correlation of clinical manifestations of infection and observation of macro- and microscopic properties
 - experienced technologists, morphological characteristics

- DNA sequence-based ID \textit{(gold standard)}
 - expensive and time-consuming

Both restricted by slow growth of dermatophytes (up to 3 weeks)
MALDI-TOF MS identification
(Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry)

ID dermatophytes:
- Improve accuracy
- Decrease analysis time
Dermatophyte culture
(Sabouraud chloramphenicol)
3 days, 25°C

MALDI-TOF MS
Direct deposit
W or W/O 70% formic acid
Valid result?
7 days, 25°C

MALDI-TOF MS
Protein extraction
Valid result?
14 days, 25°C

MALDI-TOF MS
Protein extraction

Use of a robust and extensive databank
195 reference strains, 58 species
BCCM/IHEM fungal collection
CHU Timone, Marseille

Method validated in Packeu A, De Bel A, L'Ollivier C, Ranque S, Detandt M and Hendrickx M

Fast and accurate identification of dermatophytes by MALDI-TOF mass spectrometry: validation in the clinical lab.
J Clin Microbiol. 2014 Sep;52(9):3440-3
Dermatophyte culture (Sabouraud chloramphenicol)

3 days, 25° C

MALDI-TOF MS
Direct deposit
W or W/O 70% formic acid

Valid result?

7 days, 25° C

MALDI-TOF MS
Protein extraction

Valid result?

14 days, 25° C

MALDI-TOF MS
Protein extraction
Dermatophyte culture
(Sabouraud chloramphenicol)

3 days, 25° C

MALDI-TOF MS
Direct deposit
W or W/O 70% formic acid

Valid result?
7 days, 25° C

MALDI-TOF MS
Protein extraction

Valid result?
14 days, 25° C

MALDI-TOF MS
Protein extraction
Dermatophyte culture
(Sabouraud chloramphenicol)

3 days, 25°C

MALDI-TOF MS
Direct deposit
W or W/O 70% formic acid

Valid result?

7 days, 25°C

MALDI-TOF MS
Protein extraction

Valid result?

14 days, 25°C

MALDI-TOF MS
Protein extraction
Dermatophyte culture
(Sabouraud chloramphenicol)

3 days, 25\(^\circ\) C

MALDI-TOF MS
Direct deposit
W or W/O 70% formic acid

7 days, 25\(^\circ\) C
Valid result?

MALDI-TOF MS
Protein extraction

14 days, 25\(^\circ\) C
Valid result?

At least 3 out of four spots: same ID (LogScore mean \(\geq 1.7\))
Dermatophyte culture
(Sabouraud chloramphenicol)
3 days, 25°C

MALDI-TOF MS
Direct deposit
W or W/O 70% formic acid
7 days, 25°C
Valid result?

MALDI-TOF MS
Protein extraction
14 days, 25°C
Valid result?

MALDI-TOF MS
Protein extraction
MALDI-TOF MS approach

max. 21 days (25° C)

Subculture on Sabouraud chloramphenicol

Results after max. 14 days (MALDI-TOF MS approach)

present outbreak: results after direct deposit methodology (3 incubation days of subcultures at 25° C)

Microsporum audouinii
Conclusion

Tinea capitis:

• Early identification of the causative agent via MALDI-TOF MS approach – (a)symptomatic carriers

• Early identification of the source, initiation of a proper treatment and restriction of the outbreak
Acknowledgements

• Section of Mycology and Aerobiology, WIV-ISP (M. Detandt)

• BCCM™/IHEM Culture Collection (M. Hendrickx)

• H. Beguin and K. Goens from the program Medical Mycology